Thursday, 23 March 2017

NOSS 3-8 (NROL-79) components now close to operational separation

In a recent blog post I documented the intricate manoeuvering of the two NROL-79 payloads (NOSS 3-8) over the past three weeks. They were manoeuvering to circularize and synchronize their orbits and manoeuvre to a desired mutual distance.

click image to enlarge


Much of this manoeuvering is now done, and the two spacecraft are now flying in formation at a mutual distance of ~50.5 km. They now look like a typical NOSS pair, as can be seen in the image above shot in the evening of March 21 (the bright star is Procyon).

Below is an updated diagram, showing the evolution of the separation between the two spacraft over time:

click diagram to enlarge

After an initial rapid post-launch separation with a drift of ~31-32 km/day, reaching a maximum separation of ~202 km on day 6 after launch, the separation distance started to decrease post day 6, and is now, by day 20-21 after launch, clearly flattening out to a stable separation distance of about 50 km.

The Mean Motion/orbital period of the two spacecraft are now very similar too, as is their orbital inclination: all signs that they are now close to the desired configuration. The two orbital planes are currently about 0.2 degree separated in RAAN.

click diagram to enlarge
click diagram to enlarge
click diagram to enlarge

While they are now at their operational distance (which looks to be ~50 km in this case) and close to operational configuration, this does not mean that NOSS 3-8 is now fully operational. Over the coming weeks, they will probably undergo extensive check-out tests. I also expect them to continue to make small manoeuvres for a while (but while maintaining a more or less stable mutual distance at ~50 km).

Several amateur satellite trackers contributed data to this analysis, including Leo Barhorst, Cees Bassa, Russell Eberst, Alain Figer, Paul Camilleri, Dave Waterman, Alberto Rango, Brad Young and me.

Sunday, 19 March 2017

NOSS 3-8 (NROL-79): Dancing in the Dark

click image to enlarge

The image above shows the new NOSS 3-8 duo (2017-011 A & B, launched as NROL-79 on March 1, see my earlier blog post here), aka USA 274, imaged on March 12 through very thin cirrus.

Over the past 2.5 weeks a number of us (Leo Barhorst, Cees Bassa and me in the Netherlands; Russell Eberst in Scotland; Alain Figer in France; and Paul Camilleri in Australia) have been chasing this duo and monitored their manoeuvering, consisting of small adjustments in apogee and perigee and orbital period.

Click diagram to enlarge

I expect their manoeuvering to be complete by 21 days (3 weeks) after launch, i.e. near March 23. They will then have attained their finalized separation distance. I expect this initial operational distance to be about 45 km. I do not exclude further small manoeuvres after March 23 though, but these will be more as a pair, and not with respect to each other.

NROL-79 consists of a NOSS (Naval Ocean Surveillance System) duo: two payloads orbiting as a close pair (typically 30-55 km). The second object is  catalogued as "debris" by JSpOC (they did this with all second payloads of NOSS launches), but isn't: after all, real debris shouldn't manoeuvre, and shouldn't stationkeep with respect to the other payload.

click diagram to enlarge

After insertion in a 1010 x 1204 km, 63.45 degree inclined orbit, the two payloads started an intricate dance in space, step by step positioning themselves with respect to each other.

In the initial week after launch the two payloads separated at a rate of ~31-32 kilometer per day, to a maximum separation of just over 200 km on Day 7. Then their drift reversed, with the two payloads gradually moving closer again (see diagram above, which also gives similar data for a previous NOSS launch, NROL-55 (NOSS 3-7) from 2015). Extrapolating the drift, and looking at the previous NOSS launch, I expect that by the end of the 3rd week after lauch (~March 23, 2017) the two payloads will reach their intended separation of ~45 km, and stabilize with respect to each other.

It is interesting to note the difference with the previous NOSS launch, NOSS 3-7, also depicted in the diagram. The latter initially drifted further apart, and for a longer time: the separation increased until 14 days after launch (double as long as for the current case), to as much as ~570 km (almost three times as large as the current case), before the two objects started to move closer again.

In the image below, taken three days apart on March 10 and March 13, the decrease in distance over time after the first week can clearly be noted (in the images, movement is from top to bottom and the B-object is leading). The images show the payloads in roughly the same part of the sky (bright stars are 1, 10 and 13 Cyg):

click image to enlarge


A first major manoeuvre occurred on day 6, when both payloads lowered their orbital period:

click diagram to enlarge

Around that same date, the visual brightness of the two objects changed. The latter probably signifies the deployment of something on the payloads: either antennae, or perhaps panels used to make minor orbital adjustments by decreasing or increasing drag (it has long been rumoured that this is one of the ways the NOSS payloads maintain their bond).

The pattern between the current launch and the previous launch is similar (although I have a suspicion that for the previous NROL-55 launch in 2015, analysts switched the identitities of the two objects around day 6): a major orbital period adjustment on day 6, after which one of the payloads gradually increases its orbital period again while the other very slowly decreases its orbital period. But what can be seen is that for the current case, the values for both payloads stay much more similar than was the case with the previous launch, just as with the evolution of the spatial separation of the two. One of the things this could point to is that, perhaps, the initial orbit insertion of NROL-79 went better than for NROL-55, but this is speculation.

Note: orbital calculations for NROL-79 used were done by myself using observational data from the persons mentioned in the main text. The NROL-55 orbit calculations from 2015 were by Mike McCants and  Ted Molczan. I am indebted to Leo Barhorst and Bram Dorreman for their help in filling gaps in my archive of orbits for the latter object.

Thursday, 16 March 2017

USA 186 recovered

click to enlarge


The image above shows USA 186 (2005-042A), a KH-11 ADVANCED CRYSTAL ("Keyhole") optical reconnaissance satellite. It is cruising just below the Pleiades star cluster in this image, which I shot yesterday evening using the Samyang 1.4/85 mm lens and an exposure of 2 seconds.

USA 186 was recovered last week after being briefly lost in the Northern hemisphere winter blackout. Leo Barhorst made one or two possible detection in February, but it was Cees Bassa who unambiguously recovered it on March 13th. Two days later, I made the image above.

The arc is still short, but it appears to be in an approximately 265 x 435 km sun-synchronous orbit. The apogee is some 20 km lower than it previously was, the perigee is about 5 km higher (i.e., the current orbit is more circular than previous orbits). It's ground repeat interval is 4 days.

USA 186 is the secondary West plane satellite in the KH-11 constellation. The hunt is now on for USA 245, the primary West plane KH-11. Recovery of the primary East plane KH-11, USA 224, will have to wait untill early summer.

When I observed it yesterday it was bright (mag +1.5) and briefly flared to mag 0 near 19:32:50 UT (March 15, 2017).

Friday, 3 March 2017

Tracking NROL-79, a new NOSS duo

Launch of NROL-79 from Vandenberg on March 1, 17:49 UT (photo ULA)

On March 1, 2017, at 17:50 UT,  an Atlas V rocket was launched from Vandenberg with a classified (double) payload for the National Reconnaissance Office (NRO) onboard. It was the 70th Atlas V mission, and the 14th NRO launch using this launch vehicle.

The two payloads were launched towards a southern direction into a 63.46 degree inclined, 1010 x 1204 km orbit. The payloads are almost certainly a new set of NOSS (Naval Ocean Surveillance System) satellites, NOSS 3-8 (NOSS satellites are also known under the code name INTRUDER). These are SIGINT/ELINT satellites operating in close, formation flying pairs. The purpose of these satellites is to geolocate radio signals, notably signals originating from ships. In order to keep their mutual distance  stable, they operate in 63.4 degree orbits, a critical inclination which keeps perigee in a stable position.

This is the 8th launch in the third generation of these spacecraft.

Based on estimated search elements, both payloads were quickly picked up by amateur trackers. Russell Eberst in Scotland and Alain Figer in France first spotted them about 10 hours after the launch, on March 2.  Paul Camilleri in Australia soon followed. I was clouded out that night, but the next night (March 3) was clear in Leiden, and I managed to image the payloads on two consecutive passes, albeit under a somewhat hazy sky. It was also imaged by Leo Barhorst that same night.

Below are two of my images of the two payloads chasing each other, from consecutive passes, obtained from Leiden under a hazy sky (click them to enlarge):


NROL-79 payloads, image 3 March 2017, 1:43 UT (click to enlarge)

In the image above taken during the first pass near 1:43 UT, the objects are moving from top to bottom through a field in Cygnus. In the image below, from the second pass, they are moving from left to right. Note the difference in brightness between the two objects, noticable during this second pass:

NROL-79 payloads, image 3 March 2017, 3:31 UT (click to enlarge)

The NOSS components are usually designated A and B (sometimes A & C). For the moment, we have named the fainter leading object B. The objects are currently still quite faint, indicating that they have not yet deployed their solar arrays and other gear.

The B object is usually catalogued as "debris" by JSpOC, but this is a ruse: in reality it is a functional payload (as it manoeuvres and carefully stationkeeps with the A component during its operational years).

Our current tracking data established that they are in a 63.46 degree inclined, 1010 x 1204 km orbit. The two payloads are about 45 km apart in space.




Over the coming days, they will likely make manoeuvres to finalize their orbits and respective positions.

The respective distances of current still operational NOSS pairs (NOSS 3-3 to 3-7) varies between 39.5 and 55 km.

Thursday, 8 December 2016

OT: the slow, 13.8 second duration earthgrazing fireball over the Netherlands of 28 Nov 2016, 04:40 UT

the long duration (13.8 s) fireball of 28 Nov 2016, 4:40 UT 
image (c) Jos Nijland, Benningbroek, NL - click to enlarge


In the early morning of 28 November 2016, near 04:40 UT (05:40 am local time), a bright, slow fireball with an extremely long duration occurred over the Netherlands.

The image above was captured by the all sky meteor camera of Jos Nijland in Benningbroek and shows how the fireball trajectory spanned much of the sky. This camera was  equipped with a rotating shutter, and the number of breaks visible in the trail amount to at least 13.8 seconds visibility. That is very long for a fireball.

With such slow, long duration fireballs, one of the first questions asked usually is: is it a meteor, or is it the re-entry of artificial space debris? In this case, the analytical results clearly show it was not an artificial object, but a meteoric fireball of asteroidal origin - i.e. a small chunk of asteroid entering the atmosphere.

A total of 7 all sky photographic cameras captured the fireball: apart from Benningbroek (Jos Nijland) shown above,  it was also captured by stations Ermelo (Koen Miskotte), Oostkapelle (Klaas Jobse), Utrecht (Felix Bettonvil), Bussloo (Jaap van 't Leven), Borne (Peter van Leuteren) and Twisk (Marco Verstraaten). Benningbroek also captured the last few seconds of the fireball on video with a CAMS camera. Koen Miskotte in Ermelo in the center of the Netherlands also observed the fireball visually, estimating it magnitude -5. He reported fragmentation.

Click to enlarge

The photographs allow to reconstruct the atmospheric trajectory, speed, radiant point and heliocentric orbit of this fireball, and whether something survived at the end or not.

The fireball appeared between 04:40:26 and 04:40:40 UT. It entered the atmosphere on a grazing shallow angle of only 11.2 degrees. The trajectory was over 180 km long - the average trajectory for all stations combined is 183 km long, but some stations captured an even longer part, with Benningbroek topping all with 212 km trajectory length! The fireball started over the North Sea at an altitude of 77 km near 53.0 N, 3.1 E (average of all stations), and moved on an almost due West-East trajectory, over the tip of North Holland province and Lake IJssel, ending at 42 km altitude over the northern part of the Noordoost Polder near 52.8 N, 5.7 E.

Four of the 7 stations were equipped with a rotating shutter in front of the lens, allowing speed reconstructions. Combined with the radiant point determination, this yields the orbit in the solar system.

The fireball entered the atmosphere with an initial atmospheric speed of 15.45 km/s. At the end of the trajectory, at 42.3 km altitude, it had slowed down to a terminal speed of 9.3 km/s. At that point, nothing was left of the original meteoroid: no meteorites reached the ground, it had completely ablated away. The deceleration curve obtained is actually quite nice:


Click diagram to enlarge


The apparent radiant of the fireball was low in the western sky, at RA 53.2 degrees, DEC +13.0 degrees in Taurus. The geocentric radiant (the radiant point corrected for amongst others gravitational influence) was at RA 43.8 degrees, DEC +0.4 degrees. The geocentric speed was 11.1 km/s.

Click star map to enlarge

The resulting heliocentric orbit is that of an Apollo asteroid, with perihelion at 0.874 AU, aphelion squarely in the asteroid belt at 2.76 AU, an orbital eccentricity of 0.518 and an orbital inclination of  4.9 degrees.

Click to enlarge


 

Friday, 2 December 2016

SIGINT Galore!


USA 136 (Trumpet 3), a TRUMPET in HEO. 28 Nov 2016
click to enlarge

The evening of 28 November was very clear - no moon and an extremely transparent sky, with temperatures around zero.

I used it to target several objects in GEO and HEO. Due to the favourable sky I could use exposure times twice as long as usual.

All the classified objects imaged were Signals Intelligence (SIGINT) satellites, i.e. eavesdropping satellites. The image above shows you one of the TRUMPET satellites, USA 136 (1997-068A), crossing through Andromeda. This is an object in a 63 degree inclined HEO orbit. The satellite was coming down from apogee at that moment and at an altitude of ~31 500 km.

Below is another object in HEO, USA 184 (2006-027A). This too is a SIGINT satellite, part of the TRUMPET-Follow On program (aka Advanced TRUMPET. It also serves as a SBIRS platform.

USA 184, a TRUMPET-FO in HEO, 28 Nov 2016
click to enlarge

This object was near apogee at this moment, at an altitude of 39 000 km over the Faroër Islands, which is why it looks stellar in this 20-second exposure. The star field is in Cassiopeia.

Both these objects hadn't been observed by our network for a while, hence they were somewhat off their predictions (1.5 degrees in position in the case of USA 136; and 1 degree off position in the case of USA 184).

I also briefly imaged a part of the geosynchronous belt, much lower in the sky. The targetted GEO objects were SIGINT satellites too: both Mercury 1 and Mercury 2 (1994-054A and 1996-026A), The Advanced ORION satellites Mentor 4 and Mentor 6 (2009-001A and 2012-034A) and the NEMESIS satellite PAN (2009-047A).

PAN and Mentor 4 (both shown below) have a story attached to them and were the subject of my recent article in The Space Review, which you can read here.

PAN (USA 207), a NEMESIS in GEO, 28 Nov 2016
click to enlarge

Mentor 4 (USA 202), an Advanced ORION in GEO, 28 Nov 2016
click to enlarge

Wednesday, 30 November 2016

Reshaping this blog

Yes, this is still the same blog, but it looks slightly different.

The design of this blog was over 11 years old. Even though the focus of this blog has always been more on content than on following the latest webdesign fads, it was about time for a cautious do-over.

I chose for a simple design. I still have to tweak a few things, so over the coming days you might see some more changes to the lay-out appear.

Friday, 11 November 2016

Chinese CZ-11 rocket stage impacts Myanmar Jade quarry (updated)

On November 9 at 23:42 UT (November 10 in local time), China launched a Long March 11 (CZ-11) rocket from Jiuquan on a south-bound trajectory, lofting the XPNAV satellite into orbit.

The object (image from the Myanmar Times)

Shortly after this, an object came crashing out of the sky in Myanmar, impacting in a Jade quarry near Hmaw His Zar village near Hpakant in Kachin Province. Photographs of the object can be seen in the news stories here and  here. The image in the first link is the best in terms of showing shape and size.

The object is reportedly ~4 meter long and ~1.5 meter wide (reports differ slightly). In one of the images, it is clear that it is different in diameter at both ends, the shape being that of a barrel with a tapering segment on it.

Size and shape conforms to (what I assume is) the second stage of the CZ-11 (edit: might in fact be the 3rd stage), which is about ~4 meters long and about 2 meter diameter at one side, tapering to about 1.4 meter diameter at the other side. A drawing of the rocket's elements is here and another, perhaps more accurate rendering is here (the drawings differ somewhat, hence my confusion on whether this is the 2nd or 3rd stage. From the second rendering, it looks to be the 3rd rather than the 2nd stage).

Click map to enlarge

As can be seen in the map above, last Wednesday's Chinese launch trajectory lines up well with the reported location of the impact in Myanmar.  So it almost certainly is the 2nd (3rd?) stage of the CZ-11 rocket used for this launch.

[edit 12 Nov 2016: to be clear, the line on the map is a projection of the orbital plane of the XPNAV satellite at the moment of launch, as a proxy for the launch trajectory. You can see it lines up with both the Jiuquan launch location and the location where the object came down in Myanmar].


UPDATE: Jeffrey Lewis ("The Arms Control Wonk") pointed me to this Chinese CNTV footage about the recent launch that shows various parts of the CZ-11 rocket. From 0:35 onwards, one of the stages shown visually clearly is a match for the Myanmar objects:



Here are a few stills from the footage, compared to one of the images of the Myanmar object. The red semi-transparent boxes indicate which stage matches in terms of shape and details such as the round hole halfway the hull:

click to enlarge
(editted 12 Nov: added images and text, noted the 2nd/3rd stage potential confusion)

Saturday, 23 July 2016

The fabrications of Masami Kuramoto (again on MH17 and the suspect Russian MoD pictures)

In January, I posted an analysis of images provided by the Russian MoD during a press conference in July 2014, a few days after the shootdown of Malaysian Airlines flight MH17 over the Ukraine. These images purport to show Ukrainian BUK installations in a field near Zaroshchens’ke.

In my investigation of these images, I showed that the images are suspect because the satellite-to-ground geometry of the satellite and target area on the moment the images were purportedly taken, do not appear to match.

In short: the satellite could only image these targets with clearly obligue angles with the horizontal at the target location, angles between 45 and 57.5 degrees. The Russian imagery however, appears to show these purported "BUK's" as if taken from a much higher angle,almost from straight above. There also appear to be inconsistencies in the shadow directions.

I noted this in the context of checking which satelite made the purported imagery (the only candidate is the Resurs P-1 satellite). For more details, read my earlier post with the original analysis.

The authenticity of these same Russian satellite images had already come under fire from the side of the Bellingcat collective earlier, based on an analysis with the photoforensic tool FotoForensics. More recently (15 July 2016) the authenticity of the images in question again came under fire, this time by the people from the Arms Control Wonk blog, using another photoforensic package, Tungstène.

Both of these photoforensic analysis are not without criticasters (most notably Neal Krawetz, the author of the FotoForensics photoforensic tools). There are however other reasons as well to be cautious with respect to this Russian imagery.

My own analysis, approached the issue from (pun intended) another angle, and came (predictably) under fire from a number of Twitter trolls, the most persistent of which was and is an anonymous  Twitter known under the nickname 'Masami Kuramoto' (they always are anonymous, and that itself tells you something). I earlier replied to his criticism in a blog post in February.

'Masami Kuramoto' initially seemed to have given up after my rebuttal, but more recently has stepped up his antics again. He has posted an analysis on his brand new blog, called "Facts versus Truthers", in which he purports to show that my model is incorrect, claiming that I published a model that was "misaligned and pointing downhill". He also tried to smear me by suggesting I am a "truther" (really a very odd insult given the positions I take).

The truth is that Masami Kuramoto's own points of view have very little to do with "facts". As I was tired of arguing with trolls I have ignored him for a while (I have better, more useful things to do), but as the antics are stepped up in the debates in the aftermath of the appearance of the Arms Control Wonk study, and Masami publicly purports he has rebutted me and proven my reconstruction "false", I will briefly discuss Masami Kuramoto's fabrications and show the malicious manipulative perversity of it all.

It is as simple as comparing my original image (left) with the reproduction by Masami Kuramoto (right):



click to enlarge

It is immediately clear that he superimposed his block model on a severely distorted version of my reconstruction.

In fact, when we project Masami Kuramoto's block model (red) over my undistorted model, with both being rotated so that the Y-axis is north-south in order to match the North-South oriented Russian satellite image and the north-south alignments of the purported BUK on that image, we get the image below.

click to enlarge

As you can see, the two models actually match very well. There is no significant difference between my model and Masami Kuramoto's model, contra Masami Kuramoto's insistence. In fact, it only appeared that way because Masami Kuaramoto provided a distorted version of my model and compared his model to that, rather than my original.

Hence why I use the word "fabrication" to refer to Masami Kuramoto's attempt to rebut me. Masami Kuramoto's argument that my model is "misaligned and pointing downhill" is simply not true, the argument is fabricated.

Looking at the reconstructions above, it is also very clear that the BUKs in the Russian MoD image do not match both Masami's own model and my model in terms of what is visible of the west sides of the launch vehicles (the slanted look of the models due to the oblique viewing angle).

This of course was the original point of my analysis: the two BUK's seem to be shown too much from directly above these machines, whereas the image should show a clearly oblique angle (as the model reconstructions show)

I want to emphatically point out, that no amount of orthorectifications applied to the Russian image can make the exposed west sides that should have been imaged (but are not), somehow automagically disappear. Nor will it result in incompatible shadow directions.

So, I think my point is clear. And it is also clear that Masami Kuramoto is a malicious, insincere troll of the kind that is abundant in the MH17 debate.

I know enough of troll behaviour by now to have no illusion that this will stop Masami Kuramoto's attempts to discredit my findings by provided fabricated counter-arguments. He will try again, and in that sense, this will be a perpetual discussion. Remember however, the history of this discussion so far, in judging the veracity of any new bollocks he might come up with.

It is interesting to look at how this whole argument developed, as it contains several clues on how to identify a troll. Masami Kuramoto tried from the start to tear my analysis apart by any handle he could perceive. When several of these attempts failed, he went on to the next one, and then yet another one. This is the hallmark of someone with a strong bias, a bias with an origin in ideology. In brief order (see also the summary and discussion in my earlier post):

1) He tried to argue that the orbital elements for the satellite in question I used were incorrect, and hence my geometry reconstruction was incorrect. He argued that the US MoD had post-altered the orbital elements for this satellite, but was taken aback when I informed him that I (and several other satellite trackers) maintain a private archive of elements. I regularly save copies of the latest orbital elements released by JSpOC to a hard drive and have an archive of these going back many years, and that analysis of that archive showed no sign of post-MH17 fiddling with the orbital elements;

2) Then he tried to use a part of the Space-Track User Agreement, taken completely out of context, to (falsely) imply that the elements would not be accurate enough (the matter of fact is that the accuracy of JSpOC elements for the question at hand is not in dispute, see my earlier post);

3) He then tried that argument again by referring to a publication, without (wanting to) realize the inaccuracies pointed out in that paper were very small scale and completely neglicable for the discussion at hand;

4) He then came with the fabricated counter-evidence currently under discussion in this blog post.

In all cases, he insisted on maintaining his position even after being corrected on the matter. It was (and is) very clear he is desperately looking for handles to tackle my analysis because he wants to prove it wrong. Masami Kuramoto is pro-Russian and promotes a worldview where Russia is never wrong, so I must be. As we have seen, he is willing to fabricate arguments to sustain his point. All this, from the comfort of his anonimity.

There are a lot of people out there like Masami Kuramoto (and, to be clear, not just pro-Russian ones). They are annoying, and poisoning the debate. Around last week's 2-year anniversary of the MH17 tragedy, we have seen a lot of it again, both anonymous and not so anonymous, coming out of the woodwork. Most of these people are "useful idiots" blinded by ideology. Some are more sinister, as they deliberately fabricate disinformation on behalf of an involved party.

Wednesday, 20 July 2016

SpaceX Dragon CRS-9 chasing the ISS in the sky

ISS and Dragon CRS-9. Click to enlarge

Last night was a clear and very warm, moonlit night (21 deg C). It was warm enough to observe in shirt and shorts. I observed MUOS 5 and USA 224, but the highlight of the night came in early morning twilight: a splendid pass of the ISS being chased by SpaceX's Dragon CRS-9 cargo vehicle launched July 18 and berthing to the ISS at the moment of writing.

The image above shows them, crossing Aquila at 1:32:42 UT (3:32 local time): ISS is the brighter object in top, the Dragon is chasing it, some 20-25 seconds behind it.

It was a splendid view, seeing the two objects majestically sailing across te sky. The Dragon was very bright an easy to see: mag +2 when clearing the rooftop in the southwest, and briefly attaining magnitude 0 while decsending in the southeast.

The image was made with my Canon EOS 60D and an EF 2.0/35mm lens set at F2.2, 5 seconds exposure at 800 ISO. This was 9.5 hours before the Dragon was captured by the ISS's robotic arm for berthing.

Tuesday, 19 July 2016

Reentry of Soyuz rocket upper stage from Progress MS-03 launch seen from New Zealand, 19 Jul 2016

On July 19, 2016, near ~6:30 UT (~18:30 local time), a bright very slow and long-lasting fireball was reported by many people from New Zealand's South Island. Several images are available, e.g. here and here and here. The fine video below is from YouTube user Ralph Pfister:



Perhaps the most accurate time given for the event is 6:26 UT as given by amateur astronomer Paul Stewart from Timaru on New Zealand's South Island. Stewart captured  the fireball on several all-sky images. A fine animation of his images is on his weblog.

From the video's it is immediately clear that this is not a meteoric fireball, but the re-entry of an artificial object (i.e. artificial Space Junk).

Time, direction of movement  and geographical position moreover match well with an obvious decay candidate: the Russian Soyuz upper stage (2016-045B, NORAD #41671) from the July 16 launch of Progress MS-03 to the International Space Station. In other words: this was a Space Junk re-entry.

At the moment of writing, the elements that are available for the Soyuz rocket stage are almost a day old and not unproblematic. For unknown reasons the B* drag value of the elsets is zero and the NDOT/2 value unrealistic.

This hampers analysis slightly, but using the almost a day old elements face-value, the upper stage would have passed over New Zealand's Southern Island near ~6:33 UT (~18:33 local time). This is within minutes of the time of the New Zealand event. The direction of movement of the rocket stage also matches that in Paul Stewart's imagery.

The maps below show the predicted position and track of the Soyuz upper stage for 19 July 2016, 16:30 UT (18:30 local time in New Zealand). They are based on the almost a day old element set  16200.42841345.

click map to enlarge

click map to enlarge

The few minutes discrepancy between predictions and actual sighting from New Zealand is not unusual for a re-entering object. The last available elements (at the moment of writing) for the Soyuz stage are actually from many hours before the reentry, and during the last moments of its life the orbital altitude drops quickly (i.e. the orbit alters).

Old elements hence will place it in a too high orbit compared to the reality of that moment. As it drops lower in orbital altitude, the rocket stage will get a shorter orbital period and hence appear somewhat earlier,  "in front" of predictions made using the old element set. Discrepancies of a few minutes are therefore normal in cases like these.

When it is "early" on the ephemerids, the orbital plane will be slightly more to the east as seen from a locality. In this case, the nominal pass predicted for Paul Stewart's locality would have been a zenith pass: but the a few minutes earlier pass time compared to the predicted time and the lower actual orbital altitude at the time of the re-entry would result in a sky track that is shifted eastwards and lower in the sky. This matches Paul Stewart's all-sky imagery.

Friday, 8 July 2016

MUOS 5 stuck in GTO

The website Spaceflight.com has broken the news that something has gone wrong with the orbit raising manoeuvres of MUOS 5. They have therefore been halted for the moment. A formal statement by the US Navy on this all is here.

So MUOS 5 at this moment appears to be stuck in the aproximately 15240 x 35700 km Geostationary Transfer Orbit (GTO) in which Paul Camilleri and me observed it between July 3 and 5 (see my previous post).

It is the white orbit in the plots below (replaced with new versions July 9):




Orbit in TLE form:

MUOS 5                                               15242 x 35703 km
1 41622U 16041A   16186.93646397 0.00000000  00000-0  00000+0 0    08
2 41622   9.8319 324.4682 3211964 178.4686 182.8307  1.52727671    09

rms   0.003   from 14 observations Jul 3.46 - Jul 5.57 (arc 2.1 days)

Thursday, 7 July 2016

Tracking MUOS 5 in GTO [UPDATED]

click to enlarge

Over the past days, Paul Camilleri in Australia and me in the Netherlands have been tracking an object in GTO with a Mean Motion of 1.5 revolutions per day. It produces brief bright (mag +8) flashes each ~5 minutes. We are certain this is MUOS 5 (2016-041A) launched June 24 (see my earlier post here, about Paul's orbit insertion and Centaur fuel vent imagery).

The image below was shot by me from Leiden, the Netherlands, during the night of 4-5 July 2016. The object was at an elevation of only 16 degrees above the horizon:

click image to enlarge

Paul first imaged it from Australia on June July 3, when it passed a few degrees from the position where we expect MUOS 5 to be placed in GEO. I next imaged it from the Netherlands during the night of June July 4-5, low at my southeast horizon not far from Mentor 6. A few hours later, Paul observed it again from Australia. All these observations can be fitted to yield this GTO orbit:


MUOS 5                                               15242 x 35703 km
1 41622U 16041A   16186.93646397 0.00000000  00000-0  00000+0 0    08
2 41622   9.8319 324.4682 3211964 178.4686 182.8307  1.52727671    09

rms   0.003   from 14 observations Jul 3.46 - Jul 5.57 (arc 2.1 days)
 
Comparing this orbit to the initial GTO insertion orbit from June 24-25 provides a clear link. The RAAN values of both orbits agree to within a few degrees, and the apogee direction is also very similar, as can be see in the plot below:


click to enlarge

In the plot above, the red orbit is the June 24 initial GTO insertion orbit. Somewhere after June 25, the satellite manoeuvered (multiple times probably) to increase its perigee from 3900 km to 15240 km. The white orbit is the resulting "current" GTO orbit from the July 3-5 observations.

[ UPDATE 7 Jul 2016 17:25 UT: I have since done an analysis that suggests that a perigee-raising manoevre from the initial 3903 km to 15242 km could have happened on July 3, near 14:33 UT, in apogee. I suspect however that it was in reality a series of smaller manoeuvres [update July 8: series of manoeuvres confirmed here]]

The grey orbit is the eventual geosynchronous orbit in which MUOS 5 will be inserted a few days from now (probably with a position near longitude 172 W). It will probably make more manoeuvres for that purpose the coming days. [update: there is a possibility it actually did so only a few hours after our last observation on July 5] 


UPDATE July 8 17:00 UT: News has come in that something went wrong and MUOS 5 is snagged in GTO for now. More on the Spaceflight.com website and a brief follow-up post here].

The plot below shows how during this manoeuvering, the orbital inclination has been lowered, from 19.0 degrees initially, to 9.8 degrees currently. It will be further lowered to ~5.0 degrees upon GEO insertion:

click to enlarge
The object shows a clear brightness variation, from mag +8 to invisible, with a peak-to-peak period of ~5.0 minutes, indicating the satellite is spin-stabilized. [update:  Ted Molczan has noted that this 5-minute periodicity seems to be typical for the Lockheed A-2100 bus in GTO].The bright peaks are of short, specular and somewhat variable duration: lasting ~0.5 to 1 minute. During the lows, the object was not visible for my equipment.

The image sequence below, from my June July 4-5 imagery, shows a part of the described brightness behaviour:

click image to enlarge

As I have written earlier, MUOS 5 will likely be placed in a geosynchronous, 5-degree inclined orbit near longitude 172 W, probably within a few days from now or perhaps even on July 5th already [see the update already mentioned above: MUOS 5 has got stuck in GTO! See also the brief follow-up post here]. This is an initial check-out position. It will stay there for 4 to 6 months, and then be moved to longitude 72 E where it will be placed as an on-orbit spare. In 2015, we observed this with MUOS 4 (see previous posts here and here).

(this post was thriple updated, on 7 Jul 17:25 UT and 8 Jul 8:30 UT and 17:00 UT)

Thursday, 30 June 2016

USA 224 recovered: an update of the KH-11 constellation




Russell Eberst in Scotland has recovered the noon-plane KH-11 ADVANCED CRYSTAL/"Keyhole" optical reconnaissance satellite USA 224 (2011-002A) this week. The recovery happened relatively late (in 2015 it was recovered 2 months earlier).

This recovery means that, after the preliminary update last March, I can provide my periodic update on the orbits of the KH-11 constellation based on timely orbital data.

In various previous post to this blog, I outlined how the KH-11 constellation consists of two primary orbital planes, the primary East and West planes; and originally two, now one, secondary orbital plane(s). Of the latter secondary planes, only one, the secondary West plane, is left after the de-orbit of USA 161 late 2014.

The past decade or so, the primary planes have been 48-49 degrees apart in RAAN. That is still the case: USA 224 and USA 245, the primary East and West plane KH-11's, are currently 49 degrees apart in RAAN.

The secondary planes used to be either 10 or 20 degrees from the corresponding primary plane in RAAN, but since mid-2014 the secondary West plane (currently USA 186) has moved further out, to 24 degrees West of the primary orbital plane.

As I have outlined before on this blog, the secondary plane(s) differ in orbital altitudes from the primary planes. The current configuration:


         perigee   apogee    l time   repeat
Sat        km        km      d node   (days)   plane
USA 186    261       454     08:05      3      secondary W
USA 224    262      1007     12:58      4      primary E
USA 245    266      1000     09:42      4      primary W

Given are the apogee and perigee altitudes of the satellites, the average local time they pass through their descending node (an indication of around what time they pass a given area - all satellites in the constellation are sun-synchronous, i.e. they pass  at a similar solar elevation each day), the repeat interval of the ground track in days, and the plane they orbit in.

What can be seen is that the secondary plane satellite, USA 186, is in a much more circular orbit with a much lower apogee (454 km), compared to the two primary satellites (~1000 km). Perigee altitudes of all three satellites are similar. I have speculated on the reason for this apogee difference of the secondary plane satellite at the end of a previous post.

The West plane satellites, USA 186 and USA 245, make morning passes, about 1h45m after each other. The East plane satellite, USA 224, makes passes about an hour after local noon.

The current orbital configuration has been more or less stable since mid-2014 (or more exactly, since USA 161 was de-orbitted late 2014).

Monday, 27 June 2016

Mentor 7 (NROL-37) stopped drifting at 102.6 E

Mentor 7 on 25 June 2016 
image (c) Paul Camilleri, used with permission
click to enlarge

On June 11, 2016, the National Reconnaisance Office (NRO) launched NROL-37: a new Mentor (Advanced ORION) SIGINT satellite, Mentor 7 (2016-036A). Paul Camilleri in Warners Bay, Australia, located it in orbit three days later, on June 14 (see a previous post).

At that time, it was in a semi-geosynchonous, 7.5 degree inclined drift orbit, and drifting westwards in longitude at a rate of ~0.28 degrees/day (see a previous post), after initial orbit insertion near longitude~105 E.

New observations by Paul Camilleri on June 24 and 25 show that this drift has stopped. The satellite is now geosynchronous in a stable, 7.5 degree inclined position at longitude 102.6 E. It arrived there on June 19th, after a 7-day drift.

click map to enlarge

This is almost certainly a temporary check-out position. In this location the satellite is positioned at 45 degrees elevation (i.e. halfway between zenith and horizon) for the Pine Gap Joint Defense Facility in central Australia, one of the primary ground stations for US SIGINT satellites:

Mentor 7: position as seen from Pine Gap
click to enlarge

It will probably remain here for a few weeks or a few months, and then be moved to an operational location, which I suspect will be near longitude 80 E.

Current elements:

Mentor 7
1 41584U 16036A   16177.93784503 0.00000000  00000-0  00000+0 0    01
2 41584   7.5070 353.7330 0045273  39.1128 322.1888  1.00270000    04

Friday, 24 June 2016

MUOS 5 GTO insertion and Centaur fuel dump imaged from Australia

click to enlarge
image (c) Paul Camilleri - used with permission

The spectacular image above was kindly made available to me by Paul Camilleri from Warners Bay in Australia. Taken around 18:03 UT using a 180 mm lens, it shows the just launched MUOS 5 satellite and the associated Centaur upper stage: the latter is venting fuel creating a "comet-like" cloud.

The image was made some 40 minutes after MUOS 5 separated from the Centaur stage (separation happened at ~17:23 UT). The two objects were at an altitude of ~30 000 km at that time, in a Geosynchronous Transfer Orbit (GTO).

Following separation, the Centaur upper stage had made a Collision and Contamination Avoidance Manoeuvre (CCAM) and next started to dump exces fuel in order to reduce the risk of later on-orbit explosions. This fuel-venting causes the comet-like cloud. MUOS 5 itself is visible as a small trail just under the Centaur and its fuel cloud.

Two other classified objects are, by chance, visible in the image as well: Milstar 4 and USA 155. Like MUOS 5, Milstar 4 is a military communications satellite: USA 155 is an SDS data relay satellite.

MUOS 5 was launched today at 14:30 UT (24 June 2016) from Cape Canaveral, using an Atlas V rocket with a Centaur upper stage. For a timeline and details, see here.

Over the next couple of days, MUOS 5 will use its own engines to make a series of orbit raising manoeuvres, followed by an orbit circularization to bring it in a ~5-degree inclined Geosynchronous orbit. Most likely it will initially be placed in a check-out position near longitude 172 W: I observed MUOS 4 in this position last year.

After 5 months or so, when check-out is completed, it will next be moved to longitude 72 E, where it will be parked as an on-orbit spare in the MUOS constellation (see also my earlier post on MUOS 4 here).

MUOS 5 is the fifth satellite in the Mobile User Objective System (MUOS) system of Geosynchronous narrowband communication satellites. The first MUOS satellite was launched in 2012. This system of military COMSAT is to provide communication facilities to 'mobile users': i.e. military personel in non-fixed positions such as ships, aircraft, tanks and vehicles or on foot. It is a replacement for the aging UFO constellation of COMSAT and will be able to be used by legacy UFO equipment.

The MUOS system now consists of four operational satellites (MUOS 1 to 4) and MUOS 5 as said is to function as an on-orbit spare. According to a publication by Oeting et al. in the Johns Hopkins APL Technical Digest 30:2 of 2011, it will be parked at 72 E for this purpose.


I thank Paul Camilleri for permission to feature his splendid image!


Sunday, 19 June 2016

Updated orbit for Mentor 7 (NROL-37 payload)

In my previous post I reported that the geosynchronous payload of June 11th's NROL-37 launch, the SIGINT satellite Mentor 7 (USA 268, 2016-036A) was found on June 14 by Paul Camilleri in Australia.

Paul has communicated new observations from June 15 and 16, extending the observational arc to 2.1 days. I fit the following updated orbit to it:

Mentor 7
1 41584U 16036A   16167.96105997 0.00000000  00000-0  00000+0 0    07
2 41584   7.5055 353.7008 0046333  41.2140 319.1375  1.00195548    05

rms 0.004 deg      from 9 obs June 14.70 - June 16.79  (2.09 day arc)


This orbit results in a drift rate of ~0.28 degrees per day in longitude, westwards. If this drift rate does not change in the future, the satellite will reach longitude 80 E (my guess for its eventual operational position) at the end of the first week of September 2016 [update 27 June: but see follow-on post here].

More on Mentor 7 and its recovery (including one of Paul's recovery images) in my previous post.

UPDATE 27 June 2016: Mentor 7 has stopped drifting and is stable at longitude 102.6 E - more on that in this follow-on post.

Saturday, 18 June 2016

Mentor 7, the NROL-37 payload, found

Launch of NROL-37 (photo credit: ULA)

On 11 June 2016 at 17:51 UT, after a one-day postponement, the US National Reconnaissance Office (NRO) launched a classified payload from Cape Canaveral under the launch designation NROL-37. It was a launch into geosynchronous orbit using a Delta IV-Heavy rocket.

The NROL-37 payload  has been catalogued under the generic designation USA 268 (2016-036A, 41584). It is widely believed to be a Mentor (Advanced Orion) SIGINT ('eavesdropping') satellite, Mentor 7.

Initial assessments pre-launch indicated a possible orbit insertion of the payload over Southeast Asia. After launch, Paul Camilleri, a novice satellite observer in Australia, was guided by Ted Molczan and me in an attempt to find the payload by means of a dedicated photographic survey.

In the early morning of June 15 (local time -  June 14 in UT), three days after the launch, Paul indeed successfully located the payload! The image below shows one of Paul's initial images, with the NROL-37 payload visible as a bright dot.

Mentor 7 (NROL-37) imaged June 14 by Paul Camilleri in Australia
click to enlarge - photo (c) Paul Camilleri, used with permission

From imagery on June 14 and 15, the following very preliminary orbit was calculated (for the time being, I have fixed a few parameters towards 'round' values here):

Mentor 7
1 41584U 16036A   16166.96303997 0.00000000  00000-0  00000+0 0    06
2 41584   7.5000 353.7000 0046000  41.4155 318.9349  1.00200000    04

rms 0.006, from 7 obs, 2016 June 14.70 - June 15.48 UTC


This places the satellite near longitude 104 E, over the Strait of Malacca, around the time of discovery, in a ~7.5 degree inclined near-geosynchronous orbit.

[edit 19 June 2016, 20:15 UT: I have posted an updated orbit in a later post here]


click map to enlarge

While the Mean Motion still remains somewhat ill defined from this short an observational arc, the satellite appears to be slowly drifting westwards, towards its eventual operational position.  My guess (and no more than that) is that it will eventually stop drifting near either 80 E (south of Sri Lanka) or perhaps 10 E (over central Africa). The reason for the initial placement near 104 E is likely that in this position it is initially well placed for the Pine Gap Joint Defense Facility ground station in central Australia (one of two facilities dedicated to NRO SIGINT payloads) during the initial check-out phase.

Mentor (Advanced Orion) satellites are SIGINT satellites: satellites that "listen" for radio signals. They are "the largest satellite[s] in the World", according to a statement by the then NRO director Bruce Carlson in 2010 at the time of the Mentor 5 (NROL-32) launch. There has been some speculation (it seems to be not more than that) that these satellites might have a huge fold-out mesh antenna some 100 meters wide.

Our observations suggest that these satellites indeed appear to be extraordinarily large. They are very bright (brighter than other geosynchronous payloads), typically of magnitude +8. They are the easiest geosynchronous satellites to photograph: a standard 50mm lens with a 10-second exposure will do.

The other six Mentor satellites, launched between 1995 and 2012, currently make up this configuration:

click map to enlarge

I thank Paul Camilleri for permission to use one of his photographs and for his willingnes to undertake the hunt for Mentor 7

 [edit 19 June 2016, 20:15 UT: an update here]

Tuesday, 24 May 2016

Geostationary bonanza

click to enlarge

The images above and below are two small parts of one single image shot on May 2nd 2016, using a SamYang 1.4/85mm lens on a Canon EOS 60D with 30 seconds exposure (ISO 1000) under a very dark sky. These two image excerpts overlap in the corner: the upper right corner of the image excerpt above overlaps with the lower left corner of the image excerpt below.

Although both sub-images are only a few degrees wide, they show a bonanza of objects, including 3 classified objects.

In the image above, 11 objects including the classified SIGINT satellite PAN (2009-047A) are visible. PAN is parked next to the commercial communications satellite Yahsat 1B.

In the image below, 10 objects including two classified objects are visible: the two classified objects are the SIGINT satellite Mercury 1 (1994-054A), and the SIGINT satellite Mentor 4 (2009-001A), the latter parked next to the commercial communications satellite Thuraya 2.

The full 10 x 14 degree image, of which the images featured here are small excerpt parts, shows over 30 objects.


click to enlarge